234 research outputs found

    Rapid Brain Responses to Familiar vs. Unfamiliar Music – an EEG and Pupillometry study

    Get PDF
    Human listeners exhibit marked sensitivity to familiar music, perhaps most readily revealed by popular “name that tune” games, in which listeners often succeed in recognizing a familiar song based on extremely brief presentation. In this work, we used electroencephalography (EEG) and pupillometry to reveal the temporal signatures of the brain processes that allow differentiation between a familiar, well liked, and unfamiliar piece of music. In contrast to previous work, which has quantified gradual changes in pupil diameter (the so-called “pupil dilation response”), here we focus on the occurrence of pupil dilation events. This approach is substantially more sensitive in the temporal domain and allowed us to tap early activity with the putative salience network. Participants (N = 10) passively listened to snippets (750 ms) of a familiar, personally relevant and, an acoustically matched, unfamiliar song, presented in random order. A group of control participants (N = 12), who were unfamiliar with all of the songs, was also tested. We reveal a rapid differentiation between snippets from familiar and unfamiliar songs: Pupil responses showed greater dilation rate to familiar music from 100–300 ms post-stimulus-onset, consistent with a faster activation of the autonomic salience network. Brain responses measured with EEG showed a later differentiation between familiar and unfamiliar music from 350 ms post onset. Remarkably, the cluster pattern identified in the EEG response is very similar to that commonly found in the classic old/new memory retrieval paradigms, suggesting that the recognition of brief, randomly presented, music snippets, draws on similar processes

    A novel mistranslating tRNA model in Drosophila melanogaster has diverse, sexually dimorphic effects

    Get PDF
    Transfer RNAs (tRNAs) are the adaptor molecules required for reading the genetic code and producing proteins. Transfer RNA variants can lead to genome-wide mistranslation, the misincorporation of amino acids not specified by the standard genetic code into nascent proteins. While genome sequencing has identified putative mistranslating transfer RNA variants in human populations, little is known regarding how mistranslation affects multicellular organisms. Here, we create a multicellular model of mistranslation by integrating a serine transfer RNA variant that mistranslates serine for proline (tRNAUGG,G26ASer) into the Drosophila melanogaster genome. We confirm mistranslation via mass spectrometry and find that tRNAUGG,G26ASer misincorporates serine for proline at a frequency of ∼0.6% per codon. tRNAUGG,G26ASer extends development time and decreases the number of flies that reach adulthood. While both sexes of adult flies containing tRNAUGG,G26ASer present with morphological deformities and poor climbing performance, these effects are more pronounced in female flies and the impact on climbing performance is exacerbated by age. This model will enable studies into the synergistic effects of mistranslating transfer RNA variants and disease-causing alleles

    Structural analysis of IPC zeolites and related materials using positron annihilation spectroscopy and high-resolution argon adsorption

    Get PDF
    ETH authors thanks for the grant ETH 33 15-1. PE and JČ acknowledge the financial support from the Czech Science Foundation (P106/12/0189). JPR and JČ gratefully acknowledge the financial support from the European Union Seventh Framework Programme (FP7/ 2007-2013) under grant agreement no. 604307. HRTEM characterization was performed at the Advanced Microscopy Laboratory (LMA) and the research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3).The advanced investigation of pore networks in isoreticular zeolites and mesoporous materials related to the IPC family was performed using high-resolution argon adsorption experiments coupled with the development of a state-of-the-art non-local density functional theory approach. The optimization of a kernel for model sorption isotherms for materials possessing the same layer structure, differing only in the interlayer connectivity (e.g. oxygen bridges, single- or double-four-ring building units, mesoscale pillars etc.) revealed remarkable differences in their porous systems. Using high-resolution adsorption data, the bimodal pore size distribution consistent with crystallographic data for IPC-6, IPC-7 and UTL samples is shown for the first time. A dynamic assessment by positron annihilation lifetime spectroscopy (PALS) provided complementary insights, simply distinguishing the enhanced accessibility of the pore network in samples incorporating mesoscale pillars and revealing the presence of a certain fraction of micropores undetected by gas sorption. Nonetheless, subtle differences in the pore size could not be discriminated based on the widely-applied Tao-Eldrup model. The combination of both methods can be useful for the advanced characterization of microporous, mesoporous and hierarchical materials.PostprintPeer reviewe

    Secukinumab demonstrated sustained retention, effectiveness and safety in a real-world setting in patients with moderate-to-severe plaque psoriasis: long-term results from an interim analysis of the SERENA study.

    Get PDF
    Randomized controlled trials of secukinumab have shown sustained efficacy and a favourable safety profile in multiple manifestations of psoriatic disease. To assess the long-term, real-world retention, effectiveness and safety of secukinumab in routine clinical practice for the treatment of moderate-to-severe plaque-type psoriasis (PsO). SERENA (CAIN457A3403) is a large, ongoing, longitudinal, observational study conducted at 438 sites and 19 countries for an expected duration of up to 5 years in adult patients with moderate-to-severe PsO, psoriatic arthritis and ankylosing spondylitis. Patients received ≥16 weeks of secukinumab treatment before enrolment. This interim analysis presents data from PsO patients, who were enrolled in the study between October-2016 and October-2018 and were observed for ≥2 years. In total, 1756 patients (67.3% male) with a mean age of 48.4 years and body mass index of 28.8 kg/m <sup>2</sup> were included in the analysis. The secukinumab treatment retention rates after 1, 2 and 3 years in the study were 88.0%, 76.4% and 60.5%, respectively. Of the 648 patients who discontinued the study, the most common reasons included lack of efficacy (42.6%), adverse event (17.4%), physician decision (12.2%) and subject decision (11.6%). Mean ± SD absolute PASI was 21.0 ± 13.0 at the start of treatment (n = 1,564). At baseline, the mean ± SD PASI score reduced to 2.6 ± 4.8 and remained low at Year 1 (2.3 ± 4.3), Year 2 (1.9 ± 3.6) and Year 3 (1.9 ± 3.5). The safety profile of secukinumab during the SERENA study was consistent with its known safety profile, with no new safety signals reported. Particularly, low rates of inflammatory bowel disease (0.3%; Incidence Rate [IR]:0.15), candida infections (3.1%; IR:1.43) and MACE (0.9%; IR:0.37) were observed. Secukinumab showed high treatment persistence, sustained effectiveness and a favourable safety profile up to 3 years of follow-up in the real-world population of PsO patients observed in SERENA

    An extended association screen in multiple sclerosis using 202 microsatellite markers targeting apoptosis-related genes does not reveal new predisposing factors

    Get PDF
    Apoptosis, the programmed death of cells, plays a distinct role in the etiopathogenesis of Multiple sclerosis (MS), a common disease of the central nervous system with complex genetic background. Yet, it is not clear whether the impact of apoptosis is due to altered apoptotic behaviour caused by variations of apoptosis-related genes. Instead, apoptosis in MS may also represent a secondary response to cellular stress during acute inflammation in the central nervous system. Here, we screened 202 apoptosis-related genes for association by genotyping 202 microsatellite markers in initially 160 MS patients and 160 controls, both divided in 4 sets of pooled DNA samples, respectively. When applying Bonferroni correction, no significant differences in allele frequencies were detected between MS patients and controls. Nevertheless, we chose 7 markers for retyping in individual DNA samples, thereby eliminating 6 markers from the list of candidates. The remaining candidate, the ERBB3 gene microsatellite, was genotyped in additional 245 MS patients and controls. No association of the ERBB3 marker with the disease was detected in these additional cohorts. In consequence, we did not find further evidence for apoptosis-related genes as predisposition factors in MS

    On the Wegener granulomatosis associated region on chromosome 6p21.3

    Get PDF
    BACKGROUND: Wegener granulomatosis (WG) belongs to the heterogeneous group of systemic vasculitides. The multifactorial pathophysiology of WG is supposedly caused by yet unknown environmental influence(s) on the basis of genetic predisposition. The presence of anti-neutrophil cytoplasmic antibodies (ANCA) in the plasma of patients and genetic involvement of the human leukocyte antigen system reflect an autoimmune background of the disease. Strong associations were revealed with WG by markers located in the major histocompatibility complex class II (MHC II) region in the vicinity of human leukocyte antigen (HLA)-DPB1 and the retinoid X receptor B (RXRB) loci. In order to define the involvement of the 6p21.3 region in WG in more detail this previous population-based association study was expanded here to the respective 3.6 megabase encompassing this region on chromosome 6. The RXRB gene was analysed as well as a splice-site variation of the butyrophilin-like (BTNL2) gene which is also located within the respective region. The latter polymorphism has been evaluated here as it appears as a HLA independent susceptibility factor in another granulomatous disorder, sarcoidosis. METHODS: 150–180 German WG patients and a corresponding cohort of healthy controls (n = 100–261) were used in a two-step study. A panel of 94 microsatellites was designed for the initial step using a DNA pooling approach. Markers with significantly differing allele frequencies between patient and control pools were individually genotyped. The RXRB gene was analysed for single strand conformation polymorphisms (SSCP) and restriction fragment length polymorphisms (RFLP). The splice-site polymorphism in the BTNL2 gene was also investigated by RFLP analysis. RESULTS: A previously investigated microsatellite (#1.0.3.7, Santa Cruz genome browser (UCSC) May 2004 Freeze localisation: chr6:31257596-34999883), which was used as a positive control, remained associated throughout the whole two-step approach. Yet, no additional evidence for association of other microsatellite markers was found in the entire investigated region. Analysis of the RXRB gene located in the WG associated region revealed associations of two variations (rs10548957 p(allelic )= 0.02 and rs6531 p(allelic )= 5.20 × 10(-5), OR = 1.88). Several alleles of markers located between HLA-DPB1, SNP rs6531 and microsatellite 1.0.3.7 showed linkage disequilibrium with r(2 )values exceeding 0.10. Significant differences were not demonstrable for the sarcoidosis associated splice-site variation (rs2076530 p(allelic )= 0.80) in our WG cohort. CONCLUSION: Since a microsatellite flanking the RXRB gene and two intragenic polymorphisms are associated significantly with WG on chromosome 6p21.3, further investigations should be focussed on extensive fine-mapping in this region by densely mapping with additional markers such as SNPs. This strategy may reveal even deeper insights into the genetic contributions of the respective region for the pathogenesis of WG

    Heterometallic Titanium-Organic Frameworks as Dual Metal Catalysts for Synergistic Non-Buffered Hydrolysis of Nerve Agent Simulants

    Get PDF
    Heterometallic metal-organic frameworks (MOFs) can offer important advantages over their homometallic counterparts to enable targeted modification of their adsorption, structural response, electronic structure, or chemical reactivity. However, controlling metal distribution in these solids still remains a challenge. The family of mesoporous titanium-organic frameworks, MUV-101(M), displays heterometallic TiM2 nodes assembled from direct reaction of Ti(IV) and M(II) salts. We use the degradation of nerve agent simulants to demonstrate that only TiFe2 nodes are capable of catalytic degradation in non-buffered conditions. By using an integrative experimental-computational approach, we rationalize how the two metals influence each other, in this case, for a synergistic mechanism reminiscent of bimetallic enzymes. Our results highlight the importance of controlling metal distribution at an atomic level to span the interest of heterometallic MOFs to a broad scope of cascade or tandem reactions. Summary Mixed-metal or heterometallic metal-organic frameworks (MOFs) are gaining importance as a route to produce materials with increasing chemical and functional complexities. We report a family of heterometallic titanium frameworks, MUV-101(M), and use them to exemplify the advantages of controlling metal distribution across the framework in heterogeneous catalysis by exploring their activity toward the degradation of a nerve agent simulant of Sarin gas. MUV-101(Fe) is the only pristine MOF capable of catalytic degradation of diisopropyl-fluorophosphate (DIFP) in non-buffered aqueous media. This activity cannot be explained only by the association of two metals, but to their synergistic cooperation, to create a whole that is more efficient than the simple sum of its parts. Our simulations suggest a dual-metal mechanism reminiscent of bimetallic enzymes, where the combination of Ti(IV) Lewis acid and Fe(III)–OH Brönsted base sites leads to a lower energy barrier for more efficient degradation of DIFP in absence of a base.Financial support for this work was provided by the Marie Skłodowska-Curie Global Fellowships (749359-EnanSET, N.M.P) within the European Union research and innovation framework programme (2014-2020

    Evaluation of the textural properties of ultramicroporous carbons using experimental and theoretical methods

    Get PDF
    Spherical carbon molecular sieves (CMS) have selective adsorptive properties which are suitable for separation and purification of gas mixtures. Precise methods of characterization are needed to understand the performance of CMS in separation processes. To this end, the pore size distribution (PSD) of four carbon molecular sieves were evaluated experimentally using immersion calorimetry and complemented with gas adsorption measurements at cryogenic temperatures for N2, O2 and Ar, and at 273 K for CO2. Theoretical pore size distributions were estimated using two-dimensional non-local Density Functional Theory (2D-NLDFT) models. Calorimetry results showed that B and C samples had a narrow pore size distribution with pores below 0.7 nm. Meanwhile, the pore size distributions calculated from O2 and Ar adsorption isotherms, gave an apex in the 0.5–0.6 nm region for all the carbons together with a growing development of porosity at around 0.8 nm and above for carbons A and D. The agreement observed between experiments and theory confirmed the validity of the theoretical 2D-NLDFT models to anticipate the PSD. Carbon C with pores exclusively below 0.7 nm separated CO2 and CH4 while carbon D with pores in the supermicroporous region separated propane and propylene chromatographically.JSA would like to acknowledge financial support from the Ministerio de Economía y Competitividad (MINECO) (MAT2016-80285-p), Generalitat Valenciana (PROMETEOII/2014/004) and H2020 (MSCA-RISE-2016/NanoMed Project)

    Pore wall corrugation effect on the dynamics of adsorbed H 2 studied by in situ quasi elastic neutron scattering Observation of two timescaled diffusion

    Get PDF
    The self diffusion mechanisms for adsorbed H2 in different porous structures are investigated with in situ quasi elastic neutron scattering method at a temperature range from 50 K to 100 K and at various H2 loadings. The porous structures of the carbon materials have been characterized by sorption analysis with four different gases and the results are correlated with previous in depth analysis with small angle neutron scattering method. Thus, an investigation discussing the effect of pore shape and size on the nature of adsorbed H2 self diffusion is performed. It is shown that H2 adsorbed in nanometer scale pores is self diffusing in two distinguishable timescales. The effect of the pore, pore wall shape and corrugation on the fraction of confined and more mobile H2 is determined and analyzed. The increased corrugation of the pore walls is shown to have a stronger confining effect on the H2 motions. The difference of self diffusional properties of the two H2 components are shown to be smaller when adsorbed in smoother walled pores. This is attributed to the pore wall corrugation effect on the homogeneity of formed adsorbed layer

    Association study with Wegener granulomatosis of the human phospholipase Cγ2 gene

    Get PDF
    BACKGROUND: Wegener Granulomatosis (WG) is a multifactorial disease of yet unknown aetiology characterized by granulomata of the respiratory tract and systemic necrotizing vasculitis. Analyses of candidate genes revealed several associations, e.g. with α(1)-antitrypsin, proteinase 3 and with the HLA-DPB1 locus. A mutation in the abnormal limb mutant 5 (ALI5) mouse in the region coding for the hydrophobic ridge loop 3 (HRL3) of the phospholipaseCγ2 (PLCγ-2) gene, corresponding to human PLCγ-2 exon 27, leads to acute and chronic inflammation and granulomatosis. For that reason, we screened exons 11, 12 and 13 coding for the hydrophobic ridge loop 1 and 2 (HRL1 and 2, respectively) and exon 27 of the PLCγ-2 protein by single strand conformation polymorphism (SSCP), sequencing and PCR/ restriction fragment length polymorphism (RFLP) analyses. In addition, we screened indirectly for disease association via 4 microsatellites with pooled DNA in the PLCγ-2 gene. RESULTS: Although a few polymorphisms in these distinct exons were observed, significant differences in allele frequencies were not identified between WG patients and respective controls. In addition, the microsatellite analyses did not reveal a significant difference between our patient and control cohort. CONCLUSION: This report does not reveal any hints for an involvement of the PLCγ-2 gene in the pathogenesis of WG in our case-control study
    corecore